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This document is intended to present much of the theory of linear elastic fracture
mechanics (LEFM) in a way that is readily understandable to a second year engineering
student. For a given crack geometry in a given structure, material type and boundary
conditions, LEFM provides the formula below for the normal stress σyy(x, 0) on the crack
plane with the crack. See Fig. 1.

σyy(x, 0) =
KI√
2πr

f(θ) (1)

where KI is the amplitude of the function f(θ)/(
√

2πr). The function f(θ)/(
√

2πr) is only
a function of polar coordinates (r, θ). For a centre crack in an infinite plate with uniaxial
tensile stress σ∗yy before (without) the crack and crack length a, the value of the coefficient
KI , which is called the stress intensity factor, is computed from the equation below.

KI = σ∗yy
√
πa (2)

where σ∗yy is is the traction normal to the crack plane evaluated in the UNCRACKED
specimen or structure. Note that σ∗yy and σyy(x, 0) are very different things.

LEFM succeeded because experiments showed that if for a given material, crack geom-
etry and load case, KI was less than a critical value called the fracture toughness that is
denoted KIC , the crack was unlikely to grow rapidly and the risk the structure would fail
was low. However, if KI was greater than the fracture toughness, the risk that the crack
would grow rapidly and the structure would fail was high. It is important to note that KIC

is not a material property but it is a function of the material, structure geometry, crack
geometry and load case. In other words, it is a function of the design.

The following sections will show several examples that demonstrate that the associated
stress distributions in the crack plane that are computed from LEFM theory and computed
directly with FEM are in some sense equivalent.
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1 A Center-Cracked Plate

In this example of a center-cracked plate of finite width b and σ∗yy is the tensile stress on
the crack plane without the crack, the value of the stress intensity factor KI for plane
strain deformation is given by the equation below.

KI = σ∗yy

√
πa

(
2b

πa
tan

πa

2b

)
(3)

Now the constant KI is not a fundamental constant like the speed of light. It is only
a constant for this particular crack geometry, material and this particular stress state
in this particular structure or global body. Thousands of papers have been written to
try to provide an equation to evaluate KI for every possible crack geometry and loading
situation. A typical textbook on fracture mechanics will have many such equations, each
for a different crack geometry, structure geometry and load case. Thousands of theses
and tens of thousands of papers have been devoted to LEFM. Just as one needs a contact
information for each individual person, one needs a different equation for the stress intensity
factor for each variation of a crack geometry, crack location, structure design and material.

For a crack plane normal to the y-axis that is loaded with a uniaxial yy-stress, the yy-
stress component near the crack tip as a function of polar coordinates, i.e., as a function
of distance r from the crack tip and angle θ from the crack plane, is denoted σyy(r, θ). Its
value is given by the following equation.

σyy(r, θ) =
KI√
2πr

cos
θ

2

[
1− sinθ

2
sin

3θ

2

]
(4)

This equation is a useful approximation in a region near the crack tip. It is like Goldilock’s
porridge, i.e., not too close and not too far. As the distances to the crack tip approaches
zero, the stress in the equation goes to infinity. This is clearly not possible in real materials
that cannot have an infinite yield stress. Advocates of LEFM rationalize this by arguing
that for sufficiently brittle materials, the region under going plastic strain is small and
the error caused by ignoring the error in this plastic region is acceptable. Therefore this
equation could only be realistic in the part of the curve for r > ε some distance from the
crack tip where the value of the stress declines with distance from the crack tip at the rate
predicted by the equations in LEFM theory. In real problems at stresses above the yield
stress, the material will yield plastically. In no real case will the stress go to infinity. In
LEFM theory, the stress does go to infinity at the crack tip. At distances far from the
crack tip, the stress in this equation goes to zero. This is also not realistic. The stress
near a small crack should decay to the stress σ∗yy in the uncracked structure for distances
sufficiently far from the crack, i.e., as r 7→ ∞. Thus the stress computed by LEFM is only
a useful approximation in the region not too close to the crack tip and not too far from
the crack tip.
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What is the basis of this theory? Who developed it and why? The answer is that
some of world’s brightest applied mathematicians solved some very difficult mathematical
problems to compute the eigenvalues and eigenfunctions associated with the singularity in
the stress state near the crack tip. The stress intensity factor KI is the real part of the
complex eigenvalue with the lowest non-zero real part in this particular problem. It is a
bit like the first term in a Taylor series or the critical stress for Euler’s first buckling mode
for a slender cylinder loaded in compression. However, to my knowledge, engineers who
use LEFM never compute any higher order eigen values or eigenfunctions.

So what is the justification for using a theory that is not realistic? Well all theories
are based on a set of assumptions. In science and engineering there are no theories of
everything. It is the user’s responsibility to decide if the assumptions in the theory are
sufficiently realistic, i.e., what to leave in and what to leave out. To be more precise it is the
users responsibility to decide if the theory or mathematical model when used appropriatedly
provides predictions and information that would be useful in making a decision. Clearly,
there is no question that LEFM has been very useful.

Why did people accept the unrealistic assumptions? The only reason that we can image
is that people did not want or were not capable of analyzing the stress in a complex body
that had a crack. In the period from 1950 to 1970 in which LEFM was developed and
first used in engineering, LEFM was their best option. This is no longer true. Using
modern FEM packages would be much cheaper, faster, more accurate, more realistic, more
general and easier to understand and would require far less training. Fracture mechanics
would be viewed as a standard mechanics problems requiring only a knowledge of standard
fundamental principles of mechanics and a knowledge of the required properties of the
materials. Instead of computing only the first eigen pair as in LEFM, FEM would compute
all of functions that project the exact solution of the infinite dimensional mathematical
problem onto the function space defined by the FEM elements in the finite element mesh
near the crack tip. To get a higher order approximation just refine the FEM mesh or
replace lower order elements with higher order elements.

Although LEFM theory will become irrelevant in modern engineering, just as the
LATIN language and drafting are, the full mathematical theory that solves for complex
eigen functions and eigen values could be a powerful tool for people who have the math-
ematical expertise to understand and exploit it for applications that would benefit from
this theory. Others are advised not to go near the full mathematical theory until they have
sufficient understanding of the mathematics.

2 Replacing Linear Elastic Fracture Mechanics

The only reason for using LEFM that the authors can imagine is to avoid a global stress
analysis of a large and possibly complex structure that has the crack. The global stress
analysis of the large and possibly complex structure without the crack had to be done to
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get the stress state in the neighbourhood of the crack before the crack formed. Decades
ago, before FEM codes were developed and reached their current level of maturity, it was
very expensive to compute even a crude estimate of the stress in the un-cracked complex
structure such as a ship. I cannot imagine how one could compute the stress in a complex
structure such as ship with even one crack using the classical theory of mechanics. I suspect
that this is exactly why LEFM was developed. It provided a tractable method of estimating
the stress state near a crack in a complex structure. The theory was complicated and there
were serious limitations to the theory but at the time it clearly was the best option available.

Since that time FEM codes have been developed and reached a high level of maturity.
Since domain decomposition algorithms are now available that enable a stress analysis to
be done quickly, cheaply and almost automatically using FEM in a subdomain that is only
large enough to contain the region in which the stress changes introduced by the crack are
significant. The authors argue that it is easier, simpler and at least as accurate to compute
the stress distribution near the crack tip using FEM on as fine a mesh as one deems
useful. This would avoid a great deal of mathematical gymnastics, the highly restrictive
assumptions of doubtful validity that are assumed in LEFM and would be much easier
for design engineers to understand and to use in optimizing real designs. Since very few
design engineers actually understand the theory or the assumptions that underly LEFM,
this seems highly desirable. Moreover, the FEM analysis can use nonlinear models of the
material and geometry that are more realistic.

What must be retained from the past 70 or years of research on fracture mechanics
is the experimental data. The weaknesses and limitations of LEFM do not in any way
diminish the value of the data acquired in the vast number of experiments for fracture
mechanics. This experimental data completely retains its value and remains essential to
the fracture mechanics analysis that will be done using FEM analysis. Not only could the
FEM computer models could be correlated more strongly with the experimental data, but
they could be used to design optimal experiments.

3 Measuring KIC - Fracture Mechanics Tests

Designers would like to have the opportunity to conduct experiments quickly and at low
cost. Ideally the experiment would use the real structure or a prototype. In the early stages
design, this is not possible because nothing exists but concepts. Then test specimens must
be designed.

This usually creates a need to design optimal experiments. Often one seeks to optimize
the specimen size. Smaller experiments could have a lower cost until the size reaches a
point at which the cost begins to climb. For example a standard Charpy Impact test
specimen is 1×1×10 cm which is usually considered the optimum size for a toughness test
of a material such as steel. There are a few wide plate tensile test machines in the world
that test very large specimens such 1 m diameter pipes width 25 mm thick walls of high
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strength steel but the machines and the specimens are expensive. However, when one does
not have material in sizes large enough to make the desired test specimen, one could be
pushed to devise tests with specimens of smaller size. This has been done in the nuclear
industry where only very small specimens are sometimes available.

The risk of fracture is higher in larger structures for several reasons. The probability
of more and larger defects is larger. The stress state is more highly constrained which
favours lower toughness fracture modes. The quality of the microstructure is usually lower
in larger structures because of difficulties and limitations in the manufacturing process.
Devising fracture toughness tests for very large structures such as nuclear reactor pressure
vessels that can weigh hundreds of tonnes is a challenge. One of the challenges is that
the fracture mode can be sensitive to whether the stress state is plane strain or plane
stress. Plane strain stress state has a lower fracture toughness. This is the reason that it is
often difficult to relate data from Charpy tests to the toughness of a large structure made
with essentially the same material. This has led to the design of special tests to measure
fracture toughness. One of the most popular is the compact tension test (CT). CT tests are
often made in a size with thickness close to the thickness of the structure being designed.
Designing smaller test specimens is an active research area.

Figure 1: An FEM solution of the yy-stress component in a center cracked plate with a
uniaxial plane strain tensile loading without the crack. Without the crack, the uniaxial
tensile stress would be 1000 Pa
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Figure 2: An FEM solution of the xx-stress component in a center cracked plate with a
uniaxial plane strain tensile loading without the crack.
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Figure 3: An FEM solution of the yy-stress component in a center cracked plate with zero
uniaxial plane strain tensile loading with traction from the crack plane in the uncracked
plate applied to the crack. Compare to Fig. 1.
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Figure 4: An FEM solution of the yy-stress component in a center cracked plate. Without
the crack it would be uniaxial plane strain tensile loading of 1000, 2000 and 4000 MPa.
Compare to Fig. 1.
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Figure 5: An FEM solution of the xx-stress component in a center cracked plate. Without
the crack it would be uniaxial plane strain tensile loading.
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Figure 6: An FEM solution of the y displacement component in a center cracked plate
with zero uniaxial plane strain tensile loading with traction from the crack plane in the
uncracked plate applied to the crack.
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Figure 7: An FEM solution of the x displacement component in a center cracked plate
with zero uniaxial plane strain tensile loading with traction from the crack plane in the
uncracked plate applied to the crack.
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Figure 8: An FEM solution of the y displacement component in a center cracked plate
with zero uniaxial plane strain tensile loading with traction from the crack plane in the
uncracked plate applied to the crack.
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Figure 9: An FEM solution of the x displacement component in a center cracked plate
with zero uniaxial plane strain tensile loading with traction (0, 1000, 0) the crack.

Figure 10: A plot of the yy-stress component in a center cracked plate with a uniaxial plane
strain tensile in the plane of the crack. if the part of the plot to the right of the peak is
plotted as a function of 1/

√
r, a part would be the singular function that is approximated

in linear elastic fracture mechanics. This FEM analysis is closer to reality.
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Figure 11: Illustration of different techniques that can be used to solve fatigue related
issues. Marquis (2009)
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